学術創成研究 平成14-18年度 Fund for Creative Scientific Research

Quantum Principles in Chemistry: Deepening and Realization

中間報告 ヒヤリング説明資料

平成16年7月27日

於:日本学術振興会

研究代表者

京都大学 工学研究科 教授 中辻 博

1

化学現象一量子力学的原理の発現 構告論・物性論・反応論を支配

・化学研究の方法

量子的化学原理の理解と深化

→ 予言能の発現
 → 具現化

<u>量 子 的 化 学 原 理 の 深 化 と実 現</u>

- 1. 量子化学基礎理論の精密化と再構築
- 2. ファインなスペクトロスコピーと反応の量子ダイナミクス
- 3. 巨大分子系に共通する電子状態理論の構築
- 4. 生体反応系の電子論とダイナミクスの解明
- 5. 凝縮系における反応の電子論とダイナミクス
- 6. 表面一分子相互作用系と触媒反応の電子論

研究組織

- 中辻 博 京都大学·工学研究科·教授
- 江原 正博 京都大学·工学研究科·助教授
- 長谷川 淳也 京都大学·工学研究科·助手
- 加藤 重樹 京都大学・理学研究科・教授
- (森田 明弘 岡崎国立自然科学研究機構·助教授)
- 波田 雅彦 東京都立大学·理学研究科·教授
- 榊 茂好 京都大学・工学研究科・教授

<u>中間評価ヒアリング骨子</u>

- 1. 理論化学分野の学術動向
- 2. 量子化学基礎理論の精密化と再構築
 - 1. Schrödinger方程式の一般的な解析的解法の発見
 - 2. SAC-CI理論の再構築
 - **o SAC-CI on Gaussian**
 - ○その後の展開
- 3. ファインなスペクトロスコピーと反応ダイナミクス
 - o 励起スペクトル
 - o イオン化スペクトル
 - o 振動スペクトル
- 4. 生体反応系の電子論とダイナミクス
 - o ポルフィリンの励起状態の構造
 - o エネルギー移動
 - o レチナールタンパク質の励起状態
- 5. 研究テーマと研究者の有機的連携(チームワーク)
- 6. 研究費の使用状況
- 7.H16-18年の研究計画

理論化学のめざす方向

〇

出来るだけ正確な予言能

Solve Schrödinger and Dirac equations

O出来るだけ大きな系に適用できること

Large and yet accurate

in kcal/mol accuracy

1. 量子化学基礎理論の精密化と再構築

・Schrödinger方程式の一般的解法

$$(H-E)\psi=0$$

Hamiltonian

$$H = \sum_{i} -\frac{1}{2}\Delta_{i} - \sum_{A} \sum_{i} \frac{Z_{A}}{r_{Ai}} + \sum_{i,j} \frac{1}{r_{ij}}$$

Schrödinger方程式と**Dirac**方程式が 化学の世界を律している。

理論化学の究極の目的の一つ

Schrödinger方程式とDirac方程式を出来るだけ正確に解く ための有用な理論体系を確立すること

→ 理論的・実用的メリット

- 1. 化学現象の正確な理解と予言が可能になる。
- 2. 正確な化学概念を与えることができる。
- 3. 近似理論の出発点をあたえる。
- 4. 新たな自然現象の発見 etc

Schrödinger方程式 を解く(~1999) 1) 唯一の使用可能な理論:full Cl法 $H\psi = E\psi$ 有限の基底 $H\psi = E\psi$ 本
HC = EC 変数の数: 天文学的 H₂O 約1 x 10⁶ ベンゼン 約 3.8 x 10³⁴ (double-zeta basis)

→ 実用性は限られる。

→ Full-CI解は真のSchrödinger方程式の解とはほど遠い。

2) Analyticalな波動関数を求める一般的な理論はない。 Schrödinger方程式を解析的に解く方法は?

正確な波動関数の構造論

- Schrödinger方程式の解である正確な波動関数
 は数学的にどんな構造をしているのだろうか?
- それを理論的に自動的に作り上げる一般理論は 可能だろうか?
 - 1. H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000).
 - 2. H. Nakatsuji, E. R. Davidson, J. Chem. Phys. 115, 2000 (2001).
 - 3. H. Nakatsuji, J. Chem. Phys. 115, 2465 (2001).
 - 4. H. Nakatsuji, J. Chem. Phys. 116, 1811 (2002).
 - 5. H. Nakatsuji, M. Ehara, J. Chem. Phys. 117, 9 (2002).
 - 6. H. Nakatsuji, Phys. Rev. A 65, 052122 (2002)
 - 7. H. Nakatsuji, Phys. Rev. Lett. 93, 030403 (2004).
 - 8. H. Nakatsuji, M. Ehara, J. Chem. Phys. to be submitted.

正確な構造を持つ波動関数を作り上げる理論: ICI (Iterative CI) 法 SECC (Simplest Extreme Coupled Cluster) 法

例(最も簡単な場合)

Simplest ICI (iterative CI)

 $\psi_{n+1} = (1 + C_n H)\psi_n$ *n* : iteration number

Simplest ECC (extreme coupled-cluster)

 $\psi = \exp(CH)\psi_0$

10

ICI-GSD法: 1・2体の数の変数で解く

数回の繰り返しで容易に full-CI 解が得られる!

しかし、Full-CI解はSchrödinger方程式の解からは程遠い。11

Schrödinger 方程式の解析解

Hamiltonian

$$H = \sum_{i} -\frac{1}{2} \Delta_{i} - \sum_{A} \sum_{i} \frac{Z_{A}}{r_{Ai}} + \sum_{i,j} \frac{1}{r_{ij}}$$

nuclear & electron singularities

・ ハミルトニアン積分の発散

$$\langle \psi | H^n | \psi \rangle = \pm \infty$$
 $(n \ge 3)$

この singularity の問題を如何に克服するか?

Inverse Schrödinger equation (ISE)
 H. Nakatsuji, Phys. Rev. A 65, 052122 (2002).

Scaled Schrödinger equation (SSE)
 H. Nakatsuji, Phys. Rev. Lett. 93, 030403 (2004).

scaled Schrödinger equation (SSE): $g(H-E)\psi = 0$

- g : scaling function
- 1. $g = g(r_i) > 0$

function of electron coordinates

 $[g,H] \neq 0$, $\langle \psi | g | \psi \rangle > 0$ (or <0)

2. $g \neq 0$ at all configuration space, except at singular points.

At singular points of H: g = 0 but $\lim_{r \to r_0} gV \neq 0$, for not to eliminate the information of H at the singular points.

3. A choice of $g : g = 1/(-v_{ne} + v_{ee})$

<u>Scaled Schrödinger equationに対する SICI</u>

$$\psi_{n+1} = [1 + C_n g(H - E_n)]\psi_n,$$

<u>Free ICI法</u>

- ・上のICIで作られたすべての独立関数 $\{\phi_i\}^{(n)}$ を使って ψ_{n+1} を つくる。 $\psi_{n+1} = \sum_{i}^{all} c_i \phi_i$
- Free ICI は、上の ICIよりも速く収束する。

これによって、正確な波動関数の構造をもつ、解析的な関数を作り出す一般的な方法がえられた。

Application of the ICI method

 hydrogen atom
 Hooke's two-particle atom harmonic interaction repulsive interaction
 helium atom
 lithium atom

5. hydrogen molecule

ヘリウム	の波動	関数の	歷史
------	-----	-----	----

 year	author	method	dimension	energy
1957	Kinoshita	negative power	39	-2. 903 722 5
1966	Frankowski, Pekeris	logarithm	246	-2. 903 724 377 032 6
1984	Freund, Huxtable, Morgan	logarithm	230	-2. 903 724 377 034 0
1994	Thakkar, Koga	no integer power	308	-2. 903 724 377 034 114 4
1994	Drake, Yan	Hylleraas double basis	1262	-2. 903 724 377 034 119 48
1998	Goldman	orthogonal Laguerre	8066	-2. 903 724 377 034 119 594
1999	Drake	Hylleraas double basis	2114	-2. 903 724 377 034 119 596
2000	Korobov	geminal	2200	-2. 903 724 377 034 119 598 296
2002	Korobov	geminal	5200	-2. 903 724 377 034 119 598 311 158 7 🥮 🥢
2002	Schwartz (preprint)	logarithm + Kinoshita	10257	-2. 903 724 377 034 119 598 311 159 245 194 404
 2004	Present	ICI	2746	-2. 903 724 377 034 119 598 307

Lithium atom (3電子系)

$$g = 1 - \sum_{i} r_i + \sum_{i} \sum_{i>j} r_{ij}$$

 $\psi_0 = (1 - r_3) \exp(-\alpha r_1) \exp(-\alpha r_2) \exp(-\gamma r_3)$

iteration	dimension	energy
0	2	-7. 419 183 58
1	9	-7. 466 192 36
2	31	-7. 477 602 69
3	82	-7. 477 959 21
4	190	-7. 478 043 16
5	392	-7. 478 055 52
6	748	-7. 478 059 15
7	1334	-7. 478 059 96
8	2260	
	1900 (1.0e-14)	-7.47806021

Drake and Yan (Dim-1589): -7. 478 060 32

水素分子の波動関数の歴史

Table1. Solution by expansion method (R=1.4)

method	Total Energy (a.u.)
Hartree - Fock limit	- 1.133 629 573
Full-Cl (30s29p12d9f)	- 1.174 285

Table2.Analytical solutions

Ref.	Wave Function	Comment	Total Energy (a.u.)	
James and Coolidge (1933)	$\Psi = \sum_{n=1}^{13 \text{ terms}} C\left(1 + \boldsymbol{P}_{12}\right) \exp\left[-\alpha\left(\lambda_{1} + \lambda_{2}\right)\right] \lambda_{1}^{m} \lambda_{2}^{n} \mu_{1}^{j} \mu_{2}^{k} \rho^{p}$	R=1.4 m,n≥0	-1.173 559	
Wolniewicz (1995)	$\Psi = \sum_{k=1}^{883 terms} C(1 + P_{12}) \exp[-\alpha \lambda_1 - \bar{\alpha} \lambda_2] \lambda_1^m \lambda_2^n \mu_1^j \mu_2^k \rho^p \times [\exp(\beta \mu_1 + \bar{\beta} \mu_2) + (-1)^{j+k} \exp(-\beta \mu_1 - \bar{\beta} \mu_2)]$	R=1.4011 m,n≥0	-1.174 475 930 742	
Cencek and Kutzelnigg (1996)	$\Psi = \sum^{1200 \text{terms}} C(1 + P_{12}) \exp[-\alpha r_{1C}^2 - \bar{\alpha} r_{2C'}^2 - \beta r_{12}^2]$	R=1.4011 gaussian functions	-1.174 475 931 211	
This work ICI	$\Psi = \sum_{k=1}^{1680 \text{ terms}} C(1+\hat{P}_{12}) \exp[-\alpha (\lambda_1+\lambda_2)] \lambda_1^m \lambda_2^n \mu_1^j \mu_2^k \rho^p$	R=1.4011 m, n: positive & negative	-1.174 475 931 332 🍰	

まとめ

- Schrödinger 方程式を解析的に解く一般的な 方法が確立された。
- その解は常に解析的な形であたえられ、そこに含まれる未知数は解析的な方法やMonte Carlo法で求められる。
- ・今後の理論化学研究の王道となる可能性

正確な予言 正確な概念 新たな現象の発見

1. 量子化学基礎理論の精密化と再構築

・Schrödinger方程式の一般的解法

•SAC-CI理論の再構築

2. ファインなスペクトロスコピーと反応の 量子ダイナミックス

> O 励起スペクトル O イオン化スペクトル O 振動スペクトル

SAC-CI on GAUSSIAN 03

基底・励起状態の電子状態・スペクトル・化学反応の研究のためのプログラム

SAC-CI理論: 分子の全ての電子状態を記述できる電子相関理論 (1978:中辻)

2003年春 Gaussian Inc.より公開:理論もプログラムもmade-in-Japan

量子的化学原理の深化 🗳 実現

J. Wan, J. Meller, M. Hada, M. Ehara, H. Nakatsuji, J. Chem. Phys. 113, 7853 (2000). ibid. 114, 842 (2001).

精密な理論スペクトロスコピー ーイオン化に伴う振動スペクトルー

2003年春SAC-CI on Gaussian03First version2004年春改良版: Gaussian03Rev. C.02Energy Gradientの計算の加速

- 3. 生体反応系の電子論とダイナミクスの解明
 - ・ポルフィリンの励起状態の構造
 - ・エネルギー移動
 - ・レチナールタンパク質の励起状態

励起ポルフィリンの構造緩和:SAC-CIによる研究

Table. Bond distances of the ground and excited states of free-base porphin (FBP). Excitation energies of FBP.

Struct.		SAC-CI					
parameter	Ground	Singlet ^a					
	X^1A_g	$1^1B_{1u}(Q_x)$	$\frac{1^{1}B_{1u}(Q_{x})}{1^{1}B_{2u}(Q_{y})}$		$2^{1}B_{2u}(N)$		
ポルフ	ィリンク	D最適化構造	し (結合長)				
N21-C4	1.362	1.366 (0.004)	1.364 (0.002)	1.366 (0.004)	1.365 (0.003)		
N22-C6	1.350	1.354 (0.004)	1.354 (0.004)	1.361 (0.011)	1.355 (0.005)		
C2-C3	1.367	1.372 (0.005)	1.369 (0.002)	1.367 (0.000)	1.371 (0.004)		
C7-C8	1.351	1.353 (0.002)	1.355 (0.004)	1.364 (0.013)	1.354 (0.003)		
C3-C4	1.432	1.430 (-0.002)	1.433 (0.001)	1.436 (0.004)	1.432 (0.000)		
C6-C7	1.458	1.456 (-0.002)	1.455 (-0.003)	1.445 (-0.013)	1.467 (0.009)		
C4-C5	1.392	1.396 (0.004)	1.396 (0.004)	1.391 (-0.001)	1.398 (0.006)		
C5-C6	1.397	1.402 (0.005)	1.401 (0.004)	1.404 (0.007)	1.400 (0.003)		
RMS ∆		(0.003)	(0.003)	(0.007)	(0.004)		

ポルフィリンの励起・蛍光エネルギー(eV)

	SAC-CI	Exptl.	SAC-CI	Exptl.	SAC-CI	Exptl.	SAC-CI	Exptl.	
垂直励起エネルギー	1.80	1.96	2.16	2.31	3.56	3.33	3.69	3.65	
断熱励起エネルギー	1.79		2.15		3.52		3.68	H ₁	1 C17
蛍光エネルギー	1.77	1.95	2.14		3.46		3.67		_C ₁₆ .
ストークス・シフト	0.03		0.02		0.10		0.02	H ₁₀	0

⇒ 励起状態における構造緩和・エネルギー緩和が非常に小さい.

例)他の分子 GFP色素~0.5 eV, Ni(CO)₃ 1.0 eV

→ 光合成の励起エネルギー移動

励起状態のエネルギー緩和(構造緩和)が小さい。

エネルギー緩和が大きい → エネルギーを運べない。

光合成反応中心と光捕集系:数千のポルフィリン化合物

レチナール蛋白質の励起状態(京大理・エグループのチーム・ワーク)

構造 ⇒ QM/MM (加藤·林 京大理·福井センター) 励起状態 ⇒ SAC-CI (長谷川 京大工)

System	SAC-CI		Exptl.	CASPT2 ^a	MRMP2 ^b
System -	E _{ex} (eV)	Osc.(au)	E _{ex} (eV)	E _{ex} (eV)	E _{ex} (eV)
ロドプシン	2.55	0.80	2.49	2.78	
バクテリオロドプシン					
BR状態	2.22	1.01	2.18		2.75
K状態	1.89	0.88	2.03		
KL状態	2.08	0.94	2.10		
センサリーロドプシン	2.53	1.18	2.49		

Table. The first excited state of the retinal proteins calculated by the SAC-CI method.

^a S. Hayashi, I. Ohmine, J. Phys. Chem. B 104 (2000) 10678-10691, ^b N.Ferre, M. Olivucci: J. Am. Chem. Soc. 2003, 125, 6868-6869.

レチナール蛋白質の励起状態

ロドプシン, センサリーロドプシン : 光センサー バクテリオロドプシン : 光駆動のプロトンポンプ

研究経費の使用状況

中辻グループ(中辻・江原・長谷川)

H14 ワークステーション(AlphaStation) 15台

ファインなスペクトロスコピー、生体反応系の電子論:大規模計算にフルに活用。 H15 PCクラスター(Pentium 4) 60台

Schrödinger方程式の一般的解法:解析的解法のプログラムの実行。

モンテカルロ法についても、効率的な並列計算を常時実行。

HP Itanium II (zx6000) 3台: 現有最速機であり、研究全体で利用。 研究支援者 H14に3名、H15に3名採用。

主に巨大分子系の電子状態理論の構築およびファインなスペクトロスコピーの研究を支援。 「第1回のシンポジウム:量子的化学原理の深化と実現」を平成15年12月に開催。

加藤グループ (加藤・森田)

H14 ワークステーション(VT-Alpha6) 3台, PCクラスター(Pentium 4) 16cpu H15 ワークステーション(Alpha DS25) 1台, PCクラスター(Pentium 4) 37cpu 反応の量子ダイナミクス、凝縮系における反応の電子論とダイナミクス

波田グループ(波田)

H14 ワークステーション(VT-Alpha6) 4台

H15 PC (Opteron) 6 台 + PC クラスター(Pentium 4) 10 cpu

ファインなスペクトロスコピー、生体反応系の電子論

榊グループ(榊)
 H14 PCクラスター(Pentium 4) 22cpu
 H15 PCクラスター(Pentium 4) 20cpu
 触媒反応の電子論

並列高速計算機ネットワークシステム

シンポジウム・ワークショップの開催

シンポジウム:量子的化学原理の深化と実現 Dec.13, 2003, Kyoto

以下のシンポジウムの中で学術創成研究の workshopを開催。

1st Asian Pacific Conference on Theoretical & Computational Chemistry May 12~15, 2004, Okazaki

Czech-Japan Theoretical Chemistry Symposium Sep. 14~16, 2005, Prague

12th International Congress of Quantum Chemistry (XII-ICQC) May 21~26, 2006, Kyoto

Chemical reaction dynamics in solution and biological systems May 27~29, 2006, Kyoto

シンポジウム:骨子的化学原理の深化と実現 日時: 平成15年12月13日(土) 午前10:00~午後4:50 京都リサーチパーク サイエンスホール 午前の部 10:00 開会の辞 波田 雅彦 (東京都立大学) 司会: 太田 勝久 (室蘭工業大学) エネルギー密度解析(EDA)の開発とその応用 中井 浩巳 (阜稲田大学) 10:05 金属クラスターの構造と反応性 10:35 リントゥルオト 正美 (京都府立大学) 11:05 An extended hybrid density functional with accurate electronic and thermodynamic properties of molecular systems and improved intermolecular interactions in van der Waals complexes Xu Xin (Xiamen 大学) 11:35 昼食 午後の部 司会: 北尾 修 (産業技術総合研究所) ゲート絶縁膜信頼性解析シミュ 12:45 牛尾 二郎 (日立製作所 多次元分光法による凝縮系ダイナミクスの理論解析 脊藤 真司 (名古屋大 SAC-CI on Gaussian03 13:45 波田 雅彦 (東京) 14:15 Coffee Break 14:45 Ground and excited states of transition me A theoretical study 振明(Dalhousie 大学) 分子複合化による電子状態と電子的機能 杉本(熊本大学) 15:45 量子的化学原理の深化と実現 中辻 博 (京都大学) 16:45 閉会の辞 長谷川 淳也(京都大学)

H16~H18年の研究計画 世界に冠たる理論化学研究を展開

①創造的・革新的・学際的学問領域を創成する研究

○ 正確な波動関数の構造論
○ Schrödinger方程式の解析的解法の確立
○ 新しい解析的手法、モンテカルロ法の導入開拓

独創的な発想、特に意外性のある発想に基づく研究で新しい学問領域の創成に 発展する研究

これまでの学問体系、概念、手法等を大きく変えるような波及効果が見込 まれ、新しい学問領域を創成することが期待される研究と言える。

○これまでの学問体系、概念、手法等を大きく変えるような波及効果が見込まれ、 新しい学問領域を創成することが期待される研究

O既存の学問領域を異なる観点からとらえ直し、新しい学問領域を創成する研究

謝辞

最後に、本学術創成研究によって、我々は大きくエンカレッジされ、 必要な計算機環境をととのえ、研究に専念することができ、それに よって、ここに報告する中間成果をうる事ができた。ご推薦頂いた、 長尾 真 前京都大学総長を始め、審査の先生方、評価委員の先生方、 文部科学省の関係者に、心から厚く感謝申し上げる。

研究代表者 中辻 博